|
| 27: |
|
A__FACT(X) |
→ A__IF(a__zero(mark(X)),s(0),prod(X,fact(p(X)))) |
| 28: |
|
A__FACT(X) |
→ A__ZERO(mark(X)) |
| 29: |
|
A__FACT(X) |
→ MARK(X) |
| 30: |
|
A__ADD(0,X) |
→ MARK(X) |
| 31: |
|
A__ADD(s(X),Y) |
→ A__ADD(mark(X),mark(Y)) |
| 32: |
|
A__ADD(s(X),Y) |
→ MARK(X) |
| 33: |
|
A__ADD(s(X),Y) |
→ MARK(Y) |
| 34: |
|
A__PROD(s(X),Y) |
→ A__ADD(mark(Y),a__prod(mark(X),mark(Y))) |
| 35: |
|
A__PROD(s(X),Y) |
→ A__PROD(mark(X),mark(Y)) |
| 36: |
|
A__PROD(s(X),Y) |
→ MARK(X) |
| 37: |
|
A__PROD(s(X),Y) |
→ MARK(Y) |
| 38: |
|
A__IF(true,X,Y) |
→ MARK(X) |
| 39: |
|
A__IF(false,X,Y) |
→ MARK(Y) |
| 40: |
|
A__P(s(X)) |
→ MARK(X) |
| 41: |
|
MARK(fact(X)) |
→ A__FACT(mark(X)) |
| 42: |
|
MARK(fact(X)) |
→ MARK(X) |
| 43: |
|
MARK(if(X1,X2,X3)) |
→ A__IF(mark(X1),X2,X3) |
| 44: |
|
MARK(if(X1,X2,X3)) |
→ MARK(X1) |
| 45: |
|
MARK(zero(X)) |
→ A__ZERO(mark(X)) |
| 46: |
|
MARK(zero(X)) |
→ MARK(X) |
| 47: |
|
MARK(prod(X1,X2)) |
→ A__PROD(mark(X1),mark(X2)) |
| 48: |
|
MARK(prod(X1,X2)) |
→ MARK(X1) |
| 49: |
|
MARK(prod(X1,X2)) |
→ MARK(X2) |
| 50: |
|
MARK(p(X)) |
→ A__P(mark(X)) |
| 51: |
|
MARK(p(X)) |
→ MARK(X) |
| 52: |
|
MARK(add(X1,X2)) |
→ A__ADD(mark(X1),mark(X2)) |
| 53: |
|
MARK(add(X1,X2)) |
→ MARK(X1) |
| 54: |
|
MARK(add(X1,X2)) |
→ MARK(X2) |
| 55: |
|
MARK(s(X)) |
→ MARK(X) |
|
The approximated dependency graph contains one SCC:
{27,29-44,46-55}.